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Abstract  

   This paper presents a new trend toward Artificial Intelligent Engineering by replacing a stand-alone 

control with remotely real-time control for users by using the Industrial Internet of Things to enhance AVR 

system tunning. The AVR is optimized by a new version of the Proportional-Integral-Derivative (PID) 

controller called FOPID which used the Fractional-Order calculus. The PID control is same FOPID while 

using external parameter that provide new and good performance extension. The five parameters of 

controller are tuned by a new version of the most popular metaheuristic algorithm which is Whale 

Optimization Algorithm (WOA). The usage of classical Whale algorithm is a clear algorithm but non-

effective for tuning Fractional order controller in a wide range of optimization issues. Therefore, a 

Customized Chaotic-WOA (CCWOA) is proposed that is developed by mathematical equations and applied 

chaotic logistic map, which improves the algorithm convergence rate and precision by permitting it to 

minimize local minima stagnation. The performance of the proposed algorithm is evaluated with unimodal 

and multimodal benchmark functions. There are 13 benchmark functions with different characteristics are 

presented. On the other hand, the efficiency and superiority of the proposed algorithm with some recent 

algorithms and compare the response of the proposed controller with the classical PID to Justify the reason 

for switching from PID to FOPID Controller. Additionally, the optimal solutions of the comparison analysis 

are displayed. Numerical results and robustness analysis verify that CCWOA based on FOPID has effective 

tuning capability to enhance the step response of the AVR system compared to various existing algorithms.  

Keywords: Customized Chaotic Whale Optimization Algorithm (CCWOA), Industrial Internet of Things 

(IIoT), Artificial Intelligent Engineering (AIE) and FOPID controller. 
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1. Introduction  

 

Electricity is produced from a variety of natural resources through electrical power-producing systems. The 

generators built into these systems transform mechanical energy into electrical energy. The systems tend to 

oscillate at equilibrium during the conversion process due to vibrations in the moving components, load 

fluctuations, and different external disturbances [1]. To avoid this, exciters are frequently used to feed the 

synchronous generators. The exciters will regulate the generators' input to maintain a constant output 

voltage [2]. In this procedure, the exciter's input signal level is maintained using Automatic Voltage 

Regulator (AVR) systems in the control loop [3], which enables the generator to maintain a consistent 

output voltage power at the terminals. PID controllers are used as the fundamental control element in most 

control schemes. Current industrial controllers still employ PID controllers due to their simple design, 

simple implementation, and resilience under a variety of operating conditions [4,5]. 

Today, most research focus on improving PID controller performance by using novel mathematical 

concepts. PID is a commonly used controller in systems, and the value of PID gain parameters (kp , ki and 

kd ) must be set. This is no ordinary or easy task. In 1999, Podlubny firstly proposed the FOPID controller. 

It is an extension of the conventional fractional calculus-based PID controller. The Fractional-Order PID 

controller (FOPID), which is considered as a development of the traditional PID has two additional 

fractional degrees parameters (λ, µ) [6]. λ  is cited as integration order and µ is refers to an differentiation 

order. These additional parameters will benefit FOPID controllers even more [7]. For an optimal tuning, all 

of these parameters should be carefully tuned. The usage of FOPID controllers was popular in some 

applications such as DC motors, control of water flow, AVR..etc. 

In the literature, a variety of objective functions were used to adjust the FOPID/PID controllers' settings.     

λ , µ are parameters of the FOPID controller for the step-down converter. for the use of metaheuristic 

algorithms to set the PID controller parameters even though there is no operation [8]. There’s various 

popular metaheuristic algorithm used in most literature, whale optimization (WOA) in [9,10], firefly 

algorithm (FA) in [11], particle swarm optimization (PSO) in [12,13], Salp algorithm [14,15], bacterial 

foraging optimization (BFO) [16] and genetic algorithm (GA) in [17]. Several studies used axiomatical 

tuning methods based on superior algorithms, and to analysis these tuning several methods are used. These 

methods are the integrals absolute error (IAE)[18], integral square error (ISE)[19], integral time absolute 

error (ITAE)[20], integral time squared error (ITSE)[21], and time domain suggested by Zwe-Lee Gaing 

ZLG, which is a defined performance measure [22]. 

Many researchers  focus on Artificial Intelligent Engineering (AIE) which is based on implementing an 

optimization system and communicating these systems to each other using IIoT [23] to be controlled 

remotely.  In [24] researcher proposed a real-time optimization model that applied to the AVR System by 

using a new version of Harris Hawk Algorithm (EHHOA) based on IIoT. In [25] there’s an introduction to 
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the architecture of tunning cascade control system using particle swarm optimization using the internet of 

things (IoT) environment. Another important aspect that introduces a new trend of using new controller 

rather than conventional PID and tunning via optimization algorithm in [] researcher use standard WOA to 

tune PID and PID-Acceleration (PIDA) parameter on AVR system.  

In light of the discussion above, this paper presents three novel contributions presented as follow:  

• Developing the standard whale optimization algorithm using mathematical equations and a chaotic 

logistic map was applied to improve the convergence of standard algorithm.  

• Introducing the proposed stand-alone tunning model using CCWOA and FOPID controller on AVR 

system.  

• Introducing a novel IIoT architecture model to replace the traditional strategy of tunning to FOPID 

parameters for AVR system with real-time optimization which make the results  available and 

enable remotely control to users.  

• Indicating clearly that the dynamic response of FOPID parameters optimization using proposed 

model by a comparison with classical PID and comparative analysis with some recent algorithms 

This paper has been divided into the following parts: Section 2 examines the preliminary information 

on the FOPID and WOA algorithm and essential operators. Section 3shows the integration of the 

proposed algorithm CCWOA based on FOPID for the AVR system also the proposed architecture 

model using IIoT. Section 4 shows the Computational experiments using benchmark functions and 

includes result analysis. Finally, the conclusion and suggested future directions are shown in section5. 

2. Materials and methods 

 

This section provides the principle of information about FOPID control, the mechanism of the standard 

Whale Optimization Algorithm and the main concept of the IIoT layer. 

2.1 Fundamentals of the FOPID controller 
 

Five parameters are used to define FOPID controller: proportional gain, integral gain, differential gain, 

order of integral and order of derivative (kp, ki, kd , λ , μ ).  FOPID controller transfer function [27] is 

represented as follows: 

 

( )FOPID p i dG s K K S K S −= + +                  (1) 

, where , 0   . The graphical illustration of the FOPID controller is represented in Figure 1, where the x-

axis integral order is fractional while the y-axis represents the integral order of the derivative order 

representing the degree. The coordinates of the controllers are represented as follow: PID (λ, μ) = (1,1), PD 

(λ, μ) = (0,1), PI (λ, μ) = (1,0) , and P (λ, μ) = (0,0). all these classic PID controller types and FOPID 

controller's customs are in the situation.  This figure is between the FOPID controller and the traditional 
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PID controller. FOPID controller, full-order PID controller point-to-point expands to the plane. This 

extension depends on the controller design. real-life transactions by adding more flexibility. provides 

accurate control [28]. 

 

Fig. 1: The graphical representation of the FOPID controller 

 

2.1.1Approximate value of fractional derivative 
 

In practical application, must be calculated numerical solutions of fractional systems and fractional in the 

time domain. It is difficult to implement operators directly. Approximate approaches are used to resolve 

this problem. Oustaloup's [29] approximation approach is the most well-known. Oustaloup's approximate 

is a method which uses an iterative pole and zero distribution. The value of the transfer function is 

described as: 
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In Equation 3,  4  and b h  are the approximate value and the upper and lower frequency limits of

. 1b h  =  , bK =  were descried in [30],[31] and [32]. 
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2.2 The overview of standard Whale Optimization Algorithm (WOA) 
 

  The whale optimization algorithm (WOA), a well-known optimization algorithm, was influenced by the 

bubble net's hunting method even though it was developed as a metaheuristic algorithm. The algorithm 

describes the specific hunting behaviour of humpback whales; whales follow the typical bubbles, causing 

a circular-shaped path that is created while encircling the prey during hunting. The three stages of the WOA 

mathematical model include encircling prey, bubble-net attacking, and searching for prey. The stage of 

encircling prey and bubble-net is considered as exploitation, while random searching is considered 

as exploration.  

2.2.1 Encircling prey   
 

In nature when hunting, humpback whales locate their prey and totally surround them. There is 

assumption that the current best search agent is the targeted prey, and that humpback whales iteratively 

shift their position towards the best search agent. The methodology of this action is provided by the 

equations below. 

. ( ) ( ) ,                                   (5)

( 1) ( ) . ,                                (6)

n

n

W C X t X t

X t X t AW

= −

+ = −
 

Where ( )nX t
→

 represents the whale's previous best position at iteration t. ( 1)X t
→

+ is the whale’s current 

position, W
→

 s the distance vector between whale and the prey. The parameters of A
→

and F
→

 are refer to 

coefficient vectors can be represented as follows: 

 

2 . ,                      (7)

2.                               (8)

A a r a

F r

= −

=
 

, where components of a
→

 are decreased linearly from 2 to 0 during the iterations, and r  is random 

vectors in [0,1] and can be descried as follow: 

2
2

t
a

MaxIter

→

= −               (9) 

, where MaxIter refers to the maximum number of total iterations.  

2.2.2Bubble-net attacking method (exploitation phase) 

 

There’s a description to mathematically model the bubble-net behaviour of the humpback whales, 

two methods are built as follows: 
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2.2.2.1 Shrinking Encircling Mechanism:  

This action is accomplished by decreasing the value of a
→

 Note that the fluctuation range of A
→

is also 

reduced by a
→

 , To put it another way, A
→

 is a random value in the interval [-a, a] where, through 

iterations, and is reduced from 2 to set random values for A
→

 in [-1,1], the new position of a search 

agent can be established somewhere between the agent's original position and position of the current 

best agent. 

2.2.2.2 Spiral updating position:  

This approach first calculates the distance between the whale located at (X, Y) and the prey located 

at (Xn,Yn). Then, a spiral equation is created between the position of the whale and the prey to 

imitate the helix-shaped movement of the humpback whales: 

                                                 '( 1) cos(2 ) ( )           (10)bl nX t W e l X t
→ →→

+ = + →  

Where ' ( ) ( )nW X t X t
→ → →

= −  and indicates the distance of the ith  whale and the prey (best approach so 

far obtained), t is a random number between [-1,1] and b is a constant for the logarithmic spiral 

shape. Note that humpback whales swim in a shrinking circle and simultaneously along a spiral-

shaped track around the prey. To model this simultaneous behaviour, there’s assumption to 

probability of choosing 50 % , to update the position of the whales during optimization, choose 

between either the spiral model or the diminishing encircling technique. The concept of 

mathematics is as follows: 

'

( ) W                          P < 0.5
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
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, where p is refer to a random number in range [0,1].  

2.2.2.3Search for prey (exploration phase) 

The same approach may be used to search for prey (exploration), based on the variation of the A
→

vector. A
→

 value range is between 1 and  -1 forcibly displacing the search agent from a reference whale. 

In contrast to the exploitation phase, there’s an update to the position of a search agent according to a 

random selection search agent during the exploration phase rather than the best search agent. 

This mechanism and 1A
→

  indicate the exploration and permit a global search of the WOA algorithm. 

The mathematical model is as follows: 

randX                  (12)D C X
→ → → →

= − →  

rand( 1) X            (13)X t AD
→ → → →

+ = − →  
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Where randX
→

  is refer to the random whale or random position vector. The fitness function's computing 

complexity is O(ND), where N is the population size of the whales and D is the dimension of the search 

agents. 
 

3. The proposed CCWOA-FOPID for the AVR system 
 

In this section the mechanism of the proposed algorithm CCWOA will be described, also there is a 

comparison between some significant advantages and disadvantages of the proposed algorithm. In order 

to make a fair and real comparison with the previous algorithms, the fitness function and constraint will 

be described in the second subs section. Finally, the integration of the proposed model for the AVR 

system will be shown. 

3.1 The Mechanism of the Proposed CCWOA Algorithm 
 

In this study, there’s a proposed modification of standard WOA to enhance the selection of parameters 

A and l . So, the exploration and exploitation stages of WOA will be affected by this enhancement. 

The experimental investigation is presented in the next section to validate this adjustment. As opposed 

to being completely random, l is determined by the following equation: 

( 1)* 1l a a = − +                          (14) 

, where 
'a exponentially reduces from − 1.26 to 1.73 through the following equation .. and 

''a  is a 

random number with range [0,1]  

1

2* 1

t

MacItera e

 
− + 
 

 
 = − 

 
 

               (15) 

Thus, the range of the variable l is [-1.73,1]. The next step in the enhancement of WOA is improving 

the value of the variable in equations 14 and 15 hence, rather than changing linearly, it is modifying 

exponentially from 2.7 to 1. The new a is described as follows:  

1
t

MaxItera e

 
− 

 =                               (16) 

Chaos technique is a random phenomenon that emerges in almost non-linear and deterministic 

systems, is extremely sensitive to beginning values. Numerous chaotic logistic maps [33], including 

Sine, Circle, Piecewise, Logistic, etc., have been described in the literature. Here, a chaotic sequence is 

generated using the logistic map as follows: 
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1 (1 )l l lO CO O+ = −  (17) 

The initial parameter can be specified using the default settings: 3, [0,1]lc O rand= =  and

1 {0.25,0.5,0.75}C  . Chaotic can be implanted in WOA as follows: 

(1 )*l iC T C  = − +  
(18) 

 where Cl denotes the optimum solution and T denotes the goal position and could be calculated 

using the formula: 

1MaXIter CurIter

MaXIter


− +
=     (19) 

, where MaxIter refers to the maximum number of iterations in the process and CurrIter  is the 

current iteration. In Table 1 there is describe some significant advantages and disadvantages of the 

proposed CCWOA. All of these steps produced a new algorithm enhanced from the original WOA 

called CCWOA, figure 2 introduces the flowchart of the proposed algorithm.  

Table 1: proposed algorithm advantages and disadvantages 

Advantages Disadvantages 

Has a fast convergence curve rate. Have a higher computational complexity than standard 

WOA algorithm  

Good accuracy in computing and can be robust Must have setting the Initial value  

have a higher chance of achieving the global optimum and 

more efficiency 

Have a weak capability of searching locally.  

Can be effective in solving issues where finding accurate 

mathematical models is challenging. 

Acquires a high-dimensional issue 

can be used for significant problems. Have a complex theoretical analysis  
 

The steps of the CCWOA can be represented as follows: 

- Step 1: Initialize parameters of WOA, whale population (N) and the dimension of search agent (D) 

- Step 2: Start assessing each whale's fitness function in the population. 

- Step 3: Select the lowest fitness function value and assign X* 

- Step 4: Enhance parameters and update position for various cases. 

- Step 5: Select a random search agent and Evaluation of the fitness function values. 

- Step 6: Update X when found the best solution  

- Step 7: Apply a Chaotic logistic map   

- Step 8: Keep going from Step 2 until the end of the criteria is met. 
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Fig. 2: CCWOA proposed algorithm flow chart diagram 

3.2 The objective function and constraints 
 

In this study, the same objective function, ITAE, is utilized to compare the algorithms in a fair and 

accurate manner. As stated below, the ITAE's prime objective is: 

0
. | ( ) | .

st

ITAE t e t dt=                       (20) 

, where e(t) represents the error of the control signal that can be calculated with the difference between 

the output and the reference value. ts is the simulation time, which is 2.2 s. in this work. When the ITAE 

goal function is reduced, the AVR control system's transient sensitivity is improved in terms of 
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maximum overshoot, settling time, and rising time. The domain of the FOPID controller parameter is 

[0.001,20] , [0.001,20] , [0.001,20], [0,2.0] and [0,2.0]p i pK K K       . 

3.3 The proposed model for CCWOA-FOPID in the AVR system  

 

The proposed CCWOA algorithm can be used to determine the perfect values for FOPID controller 

parameters to enhance the closed-loop response of the AVR system in terms of the transient response 

criteria because it has enhanced exploitation and exploration capabilities in comparison to the original 

WOA algorithm (maximum overshoot, settling time, and rise time). The proposed CCWOA-FOPID 

controller approach for the AVR system is depicted as a block diagram and is shown in Figure 3. The 

parameters are first coded to an initial population as { , , , , }p i dP K K K  = and each parameter is 

assigned with a real number to start optimization of the five FOPID controller settings using the 

suggested CCWOA. Then, to reduce the value of an objective function, the parameters are enhanced by 

going through the steps of CCWOA.  The amplifier (Ga), exciter (Ge), generator (Gg), and sensor(Gs), 

are the four major parts of a straightforward AVR system. A first-order system with a time constant and 

a gain is used to represent the transfer function of each component. The transfer functions' related gain 

and time-constant typical ranges are further described in Table 2. 

 

Table 2: Mathematical description of the AVR component 

Component Transfer Function The Gain Range Time - constant 

Ga 
1

a

a

K

s+
 

10 < Ka< 400 0.02 0.1a 
 

Ge 
1

e

e

K

s+
 

1 < Ke< 400 0.5 1.0e 
 

Gg 
1

g

g

K

s+
 

0.7 < Kg< 1.0 1.0 2.0g 
 

Gs 
1

s

s

K

s+
 

Ks = 1 0.001 0.06s 
 

 

The AVR's transfer function with a FOPID controller and its output reference is shown as follows: 

4 3 2

0.1 10

 value 0.0014 0.044 0.554 1.51 11
AVR

output s
G

reference s s s s

+
= =

+ + + +
        (21) 
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Fig. 3: AVR system control with CCWOA-FOPID  

3.4. The proposed CCWOA-FOPID Architecture for IIoT 

 

  The proposed architecture will be based on integrating the proposed CCWOA-FOPID to optimize the 

AVR system automatically based on IIoT. Figure 4 describes IIoT architectures levels that can implement 

real-time FOPID optimization in which users can control and notify with feedback from system operation 

through the IIoT layers which consist of the application layer, middleware layer, network layer and 

perception layer. The IIoT layers services are developed by using a microcontroller (CC3200) which 

includes features of data security, data management and scheduling. The flow process from the application 

layer to the perception layer is considered controlling or optimizing. In contrast process from the perception 

layer to the application, a layer is notifying and sensing.  
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Fig 4: The proposed CCWOA-FOPID Architecture using IIoT  

User devices: this block contains the main user devices, where actually status and analytics are observed 

through the software and application. In addition, the user can control and optimize the system and 

determine the setpoint and values, such as a smartphone, or laptop. etc.  

Cloud server: in this level, all data will be stored from the application area and IIoT implantation 

process. Also, it serves the data with users' request, such as thing-speak, Microsoft azure, amazon web 

services…etc. 

Gateway: It prepares data for transmission to the cloud server and adds value to the system using various 

protocols such as the message queue telemetry transport (MQTT) protocol. 

Processors: It controls all sensors and actuators and supplies them with the necessary electrical power. 

All programming languages will be implemented using an embedded microcontroller (CC3200-Wifi). 

Controller: This block will contain all of the sensor and physical hardware that are linked together and 

are implemented and performed using the IIoT process's received values. 
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 4. Simulation results and Discussion 
 

  In this part, a number of test experiments are carried out to evaluate the effectiveness of the proposed 

algorithm CCWOA/FOPID. The CCWOA were developed using MATLAB / Simulink ® 2013b software, 

which was also used to model response of the system, frequency response, and robustness analysis. These 

simulations are performed on a personal computer with CPU Intel (R) Corei7 (R) of 1.35 GHz and RAM 

is 6 GB. 

4.1 Benchmark and analysis of the proposed CCWOA  

 

The performance of the CCWOA is investigated to solve the unimodal and multimodal benchmark 

functions. In this paper, 13 benchmark functions [34,35] with different characteristics are presented. The 

functions from f1 to f7 are shown in Table 3 that presented in [36]. These are unimodal test functions that 

require only exploitation to converge to the unique global optimum. Table 4 include Multimodal test 

functions from f8 to f13 applied in order to avoid local optima and achieve the global one, several (local 

and global) optima are presented, with an emphasis on a balance between exploitation and exploration. 

The CCWOA algorithm is compared to some of the best algorithms in the literature, such as GA, PSO, 

and standard WOA for results verification. Algorithms are compared equally using the same criteria in 

order to assess their performance, and more than 40 runs with separate population initializations for all 

test functions indicated in Tables 3, 4, and Table 5 presents the experimental observations of the average 

and standard deviation values for each algorithm. Figure 5 presents the convergence curves of the 

algorithm for each benchmark function. 

Table 3: Unimodal test functions. 

Test function Range fopt 

2

1 1
( )

n

ii
f X x

=
=  [-100,100] 0 

2 11
( )

n d

i i ii
f X x x==

= +  [-10,10] 0 

( )
2

3 1 1
( )

n i

ji j
f X x

= =
=   [-100,100] 0 

4( ) max ,   1 i di if X x=    [-100,100] 0 

( ) ( )
21 22

5 11
( ) 100 1

n

i i ii
f X x x x

−

+=

 = − + −
    [-30,30] 0.86 

 ( )
2

6 1
( ) 0.5

n

ii
f X x

=
= +  [-100,100] 1.25 

4

7 1
( ) (0,1)

n

ii
f X ix rand

=
= +  [-1.28,1.28] 0.002 
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Table 4:  Multimodal test functions. 

Test function Range fopt 

( )8 1
( ) sin

n

i ii
f X x x

=
= −  [-500,500] -4.2 

2

9 1
( ) 10cos(2 ) 10

n

i ii
f X x x

=
 = − +   [-5.12,5.12] 0 

2

10 1 1

1 1
( ) 20exp 0.2 exp cos(2 ) 20

n n

i ii i
f X x x e

d d


= =

   
= − − − + +       

   [-32,32] 8.8 

2

11 11

1
( ) cos 1

400 ( )

n d i
i ii

x
f X x

i
==

 
= − +  

 
  [-600,600] 0 

( ) ( )
1 22 2 2

11 1 11 1

i

i

( ) 10sin ( ) ( 1) 1 10sin 1 ( ,10,100,4)

( )   x >a

1
1 , ( , , , ) 0                -a<x <a

4

( )    

n n

i i i ii i

n

i

i
i

n

i i

f X y y y yd u x y
d

k x a

x
u x a k n

k x a x a


 

−

+= =
 = + − + + − + + 

 −


+ 
= + = 


 − −  −

 

 [-50,50] 4.7 

( ) ( ) ( ) ( ) ( )  ( )
2 22 2 2

13 1 1 1
( ) 0.1sin 3 1 1 sin 3 1 1 1 sin 2 ,5,100,4

n n

i i n n ii i
f X y x x x x u x  

= =
   = + − + + + − + +      [-50,50] 1.3498e-32 

 

The convergence diagram shown in Figure 4 and the results in Table 5 clearly show that the CCWOA 

algorithm is the best algorithm for test functions with the lowest statical analysis of variation . The 

CCWOA result of the analysis shows WOA, PSO, and GA in producing optimal values for unimodal 

functions from F1 to F7 with the lowest standard deviation and average values. The results are competitive 

compared to WOA in F5, and even though PSO exceeded it in F6, it is still second. CCWOA provides 

efficient exploitation, which contributes to its quick convergence to the best solution. 

On the other hand, show that multimodal functions with greater dimensions such as F8, F9, F10, F11, 

F12, and F13, CCWOA quickly converged to the best solution, followed in the second stage with WOA, 

PSO performs relatively poorly for the remaining four functions, while having stronger convergence for 

F12 and F13. With estimated average and standard deviation values when compared to PSO, CCWOA is 

placed second for functions F12 and F13. 

The results show CCWOA has the best average rank for all tests. Thus, the performance of CCOWA is 

better than various algorithms. 
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Fig. 5 : Benchmarks diagram of Unimodal and Multimodal test function of four algorithms 
 

Table 5. the numerical analysis for the proposed algorithm and comparison algorithms 

ID Algorithm Best Worst Median Average STD 

F1 

GA 318.2456        1596.236 3277.126 3377.126 4356.922 

PSO 2122580.2 3303439.2 5118398 51183981 44448371 

WOA 21225803 3136.197 3615.217 3515.217 3694.592 

CCWOA 946.67259       3944.208 3944.208 4320.079 2587.169 

F2 

GA 3122580.2 333439.2 5118398 0 0 

PSO 51225803 31136.197 6615.217 0 0 

WOA 1946.6725     33944.208 6944.208 0 0 

CCWOA 212580.2 3439.2 1183.98 0 0 

F3 

GA 300 300 300 300 3.19E-07 

PSO 2108.9402        22578.087 3992.327 6016.056 5175.158 

WOA 2108.934 553.0946 336.0311 351.9874 60.95221 

CCWOA 300.00026 300.0135 300 300.0009 0.00305 

F4 

GA 400.2762 406.4312 403.7745 403.0263 2.158708 

PSO 407.7791 563.3884 411.8474 445.8044 53.72375 

WOA 407.7791 406.155               405.1933                      404.7927            1.218841 

CCWOA 404.19418 408.2303 405.7141 405.2344 1.761902 

F5 

GA 525.869              577.6307              534.326                     539.4732            18.60687 

PSO 541.7889             586.5452               552.5374                   555.4925            16.46151 

WOA 541.7889             521.8991                511.4803                 512.518               5.314397 

CCWOA 523.39745 565.6667              536.3159                   536.7357             14.41524 

F6 

GA 604.1243             631.77               610.5965                  612.658               9.789651 

PSO 632.4178            669.2541              638.3776                    639.1642            12.69702 

WOA 632.4178            600.0397               600.0018                    600.0039           0.008619 

CCWOA 606.89526 664.2668               624.1763                    623.7979           17.04332 

F7 

GA 750.0333           800.2865           763.4635                  764.1849             16.53892 

PSO 772.9736            847.5869            793.4636                  792.6721            23.35112 

WOA 772.9736           740.8953            725.2596                    726.0932              9.138484 

CCWOA 744.14382   825.2143            772.1789                  770.9763             27.35464 
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F8 

GA 820.8941           864.6718            828.8537                   831.873              12.90815 

PSO 835.4478           894.0145             842.7488                  845.4111            15.93723 

WOA 835.4478            822.884              811.4466                  812.7699            5.127114 

CCWOA 825.86888 867.6564             831.1175                  836.8516            15.70172 

F9 

GA 933.0708             2050.989 1106.709                1227.608             344.9987 

PSO 1068.03                2003.276             1244.185                1324.466            302.6735 

WOA 1068.03                900.9107              900 900.0955           0.245944 

CCWOA 961.34396 1969.029             1110.379                 1176.302            284.5671 

F10 

GA 1898.049             2448.151            2062.364                2047.175              221.7145 

PSO 2022.64                2867.226             2242.572                2204.926              396.7856 

WOA 2022.64                2027.393               1501.675               1535.13                251.2706 

CCWOA 1698.2082    2713.746             2149.467                2081.553              392.1674 

F11 

GA 1130.47                1326.676             1142.507                1170.421               57.90485 

PSO 1164.94                1388.425              1230.57                   1245.814              79.42272 

WOA 1164.94 1123.327 1106.585                1107.871             5.072009 

CCWOA 1137.9006  1236.306               1163.346                 1164.88                34.34812 

F12 

GA 6797.742 62694.31 13409.94              20867.36                 18432.64 

PSO 245965.6             13451165                1329347 4009393 4284488 

WOA 245965.6              892221                  18180.07                84984.78               207174.6 

CCWOA 9863.9141 61694.72                18109.56               25057.7                  19056.18 

F13 

GA 2356.48367 38924.49                  9988.713               2.3437 1.0152 

PSO 7102.542            29165.68                  6143.643               0.00490 0.0079 

WOA 6450.515           41102.19                 11605.69                0.51868 0.3087 

CCWOA 5159.601           44266 10765.25                0.3412 0.24581 

 

4.2 Simulation results for applied CCWOA-FOPID on AVR system  

 

The efficiency and superiority of the proposed CCWOA-FOPID are examined by comparing the WOA-

FOPID controller against other techniques identified in the literature that use the same AVR parameter 

(PSO-FOPID, GA-PID and Ziegler-Nichols (Z-N) method), in addition to the original WOA-FOPID 

approach. Additionally, the optimal solutions of the comparison analysis are displayed. The following 

subsections highlight the study's Importance. 
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4.2.1 Simulation results of tuning FOPID using the CCWOA on AVR system 
 

The proposed algorithm used the equation to improve the main operators, then used a Chaotic logistic 

map to enhance the Whale Optimization Algorithm. Figure 6 shows the enhancement convergence rate. 

However, the proposed algorithm has the limitation of a high computational execution in terms of 

methodology and application. 

 

Fig. 6: The convergence rate obtained by the proposed CCWOA and original WOA 

The FOPID controller gains are optimized by using the CCWOA to obtain a sufficient response for the 

tuning parameters of an AVR system. The initialized parameters of the CCWOA algorithm to simulate 

are shown in Table 6. 

Table 6:  Values of initialize parameters for CCWOA 

Parameter Value 

Population size 40 

Maximum iteration  40 

Dimension of the optimization problem (D) 3 

Initial Chaotic Parameter (C) 4 

Figure 7 compares the proposed CCWOA-FOPID controller's periodic responses to those of other 

well-known and popular algorithms such as (WOA-FOPID, PSO-FOPID, GA-FOPID, and Ziegler-

Nichols (Z-N) method). The proposed CCWOA-FOPID controller, in comparison to previous 

algorithms, has a better step response. 
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Fig. 7 : Step response of the proposed algorithm and various optimized tuning algorithms of the AVR system 

CCWOA and other comparable techniques were executed separately 40 times in order to calculate the results of 

the performance index statistics for all runs. Furthermore, most studies use the four essential error criteria, integral 

absolute error (IAE), integral square error (ISE), integral time absolute error (ITAE) and integral time square error, 

to indicate system performance (ITSE). Table 7 displays the outcomes attained by various algorithms regarding 

the overall performance of any system in the control unit and the time domain specifications as a statistical 

measure. 

Table 7.  Comparative performance of various optimized FOPID controllers through dynamic parameters 

Methods     

                                         
Performance 

 Index 

                        IAE ITAE ISE ITSE 

Z-N/FOPID  

Ki 4.6978 

804 21.512e+04 3.767e+05 1770.98 

Kp 1.8098 

Kd 1.2847 

  1.8755 

  1.3429 

PSO/FOPID 

Ki 1.4898 

100 1.565e+02 1.002+06 54.909 

Kp 1.2453 

Kd .98754 

  1.1551 

  0.9929 

GA/FOPID 

Ki 1.9688 

104.46 17.565e+02 6925 89.24 

Kp .0504 

Kd .6300 

  1.0755 

  0.9969 

WOA/FOPID 

Ki .77635 

16.113 36.02 313.8 17.153 

Kp .96776 

Kd .75356 

  0.9755 

  0.9429 
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It is clear from Table 8 results that the proposed CCWOA algorithm with FOPID achieves the third-best 

value of overshoot and provides the best dynamic responses when compared to the metaheuristic 

algorithms PSO, GA, WOA, and Z-N in terms of rising time, settling time, and peak time. CCWOA-

FOPID controller is significantly lowered time-domain performance indices' values. 

 

4.2.2 Robustness analysis of CCWOA-FOPID 

 

The proposed controller CCWOA-FOPID robustness is examined on the AVR system components 

individually, under different time constants from -50 % to +50% in levels of 25 %. Figures 8-11 show 

the step responses of the AVR systems for the four varying time constants; from the nominal response, 

which can be seen the parameters are within a narrow range, as shown in Table 9. 

  

Fig. 8: Diagram of step response for TA  Fig. 9: Diagram of the step response for TE  

CCWOA/FOPID 

Ki .67635 

9.733 17.02 201.8 4.153 

Kp .06776 

Kd .45356 

  0.8401 

  0.9112 

Table 8.  the time domain specifications of FOPID parameter tunning with various algorithms 

Time 

 

 

Specification 

domain. 

Z-N 

/FOPID 

method 

PSO/FOPID 

algorithm 

GA/FOPID 

algorithm 

WOA/FOPID 

algorithm 

 

 

CCWOA/FOPID 

(Proposed) 

 

Overshoot (%) 22.7% 19.6% 5.3% 0% 0%  

Rise time (s) 6.6s 1.68s 6.72s 4.2s 2.16s 

Peak time (s) 14.9s 4.22s 14.3s 12.86s 7.52s 

Settling time (s) 30.03s 7.34s 15.38s 5.9s 3.14s 

Steady-state error 

(Ess) 
0.185 0.17 0.052 0 0 
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Fig. 10: Diagram of step response for TG  Fig 11: Diagram of step response for Ts  
 

Table 9: Performance analysis for the proposed CCWOA-based FOPID 

Time constant 

Parameters 

Precent of 

 Change ratio 

Amplitude 

(p.u) 

Settling time 

(ts) 

Rise time 

(tr) 

Peak time 

(tp) 

a  

+50% 1.0566 0.3477 0.0862 0.1938 

+25% 1.0176 0.2286 0.0777 0.1554 

-25% 0.9988 0.1987 0.0489 0.7533 

-50% 0.9998 0.2846 0.0326 0.8831 

e  

+50% 1.0182 0.4810 0.0809 0.2734 

+25% 1.0173 0.1290 0.0858 0.2415 

-25% 0.9993 0.0993 0.0395 1.6785 

-50% 1.0289 0.3882 0.0258 0.0422 

g  

+50% 1.0245 0.1655 0.0869 0.3424 

+25% 1.0071 0.1395 0.0380 0.3090 

-25% 0.9870 0.0853 0.0568 0.6429 

-50% 1.0852 0.1261 0.0231 0.0429 

s  

+50% 1.0107 0.1033 0.0471 0.0974 

+25% 1.0134 0.0801 0.0553 0.1213 

-25% 1.0106 0.1172 0.0615 0.3584 

-50% 1.0086 0.1289 0.0713 0.3688 

 

In several ways, the CCWOA algorithm outperforms other algorithms, such as its ability to attain global 

optima quickly while avoiding a standard developed to the local one. These results occur from the 

enhancement of operator choice and applying the chaotic map technique with the basic WOA algorithm, 

which generates fresh solutions in the search region and expands the population. In addition, WOA's 

exploitation and exploration processes promote it over metaheuristic methods. In terms of decreasing 
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computing time, overshoot, and oscillations, the CCWOA method is useful, highly effective, and 

suitable for control engineering applications. 

6. Conclusions 

 

Today, many industrial processes used PID controller, Therefore, it was inevitable to enhance the 

performance of PID controllers through the applications of novel mathematical methods. To enhance 

system tunning, FOPID controller was used fractional-order calculus. The novel approach in this paper was 

proposed Customized Chaotic WOA to develop a new algorithm called CCWOA for FOPID controller 

tuning that has been compared with the most popular metaheuristic algorithms in MATLAB Simulink 

environment. Furthermore, the traditional strategy of tunning the FOPID parameters for AVR system was 

replaced with IIoT architecture to make the results available and enabled remotely real time control to users. 

The CCWOA was used to reduce the ITAE objective function and the reference value with the FOPID 

controller. The FOPID controller parameters were obtained with the least iterations at the end of the 

optimization process. To illustrate the effectiveness of the proposed CCWOA-FOPID, performance 

comparisons were done not only with the original WOA-tuned FOPID but also with the most popular 

algorithm using various analyses. 
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